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Numerical Treatment of Wave Propagation in 
Layered Media 

Murthy N. Guddati,a) Si-Hwan Park,b) and John L. Tassoulasc) 

Computational tools for the analysis of wave motion in layered media are 

reviewed. While frequency-domain-based procedures have been most widely 

used, recent developments by the authors and their co-workers have shown 

promise with regard to efficiency and accuracy in calculations directly in the time 

domain. These maintain the existing framework for layered-media modeling and 

exploit the hyperbolic nature of the governing wave equations. High-order 

approximations of the dispersion relation, amenable to straightforward numerical 

implementation, and ingredients of an adaptive scheme empowered with robust 

error estimation are outlined toward improved treatment of wave motion. 

INTRODUCTION 

The study of wave propagation in layered media is an integral part of dynamic soil-

structure interaction investigations as well as procedures for geotechnical site 

characterization. In all cases of practical interest, numerical modeling of layered media is a 

requirement in estimation of the dynamic stiffness of foundations and calculation of soil-

structure system response to incident seismic waves. The same is true in extraction of soil 

properties from surface-wave data and other measurements. 

Computations of dynamic response of soil-structure systems are usually carried out on the 

basis of models similar to the generic arrangement depicted in Fig. 1. Two complementary 

regions can be distinguished: the interior, i.e., a neighborhood of the structure encompassing 

heterogeneities, irregularities and nonlinearities, and the exterior, typically a horizontally 

layered medium extending to great, usually assumed infinite, distance from the structure. 

Finite elements have been the most common choice of interior discretization by virtue of 

their versatility in dealing with the complexity of this region. On the other hand, the exterior 
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has been represented by means of a “transmitter” or “absorber” placed on the boundary of the 

interior. This transmitting or absorbing boundary simulates the propagation of waves in the 

exterior and has been derived using a variety of schemes and approximations, with finite 

elements as well as boundary elements. Absorbers are classified (Kausel 1988, Givoli 1991) 

as local or global (nonlocal) depending on the extent of the constraint they impose on wave 

motion in space and time. Local absorbing boundary conditions couple only nearby spatial 

locations and time stations. They are computationally efficient (as they lead to sparse systems 

of equations) but can produce spurious reflections. Global conditions constrain the entire 

boundary and all past time points. They are computationally demanding but accurate, 

typically limited only by discretization error. 

 

 

Figure 1. Partitioning of a typical soil-structure system: interior and exterior 

HORIZONTALLY LAYERED MEDIA 

Modeling of the exterior as a horizontally layered medium has been routine in soil-

structure interaction studies. A variety of alternative numerical formulations have been 

considered in this direction. The present paper is focused on one such approach that has been 

in wide use and shows promise for future developments and enhancements. Referring to a 

layered medium in a two-dimensional setting as depicted in Fig. 2, semidiscretization, i.e., 

discretization only with respect to the vertical coordinate z, is applied: 
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Note that u is the displacement vector, and iN  and iU  are nodal interpolation functions of 

the vertical coordinate z and displacement vectors, respectively, associated with layer-to-

layer interfaces izz =  (see Fig. 2). A similar expression can be written for general three-

dimensional cases. Using the Principle of Virtual Work with respect to the vertical direction, 

a system of wave equations is obtained: 

 0MUGUBUAU =−−+ ttxxx  (1) 

It is worth mentioning that A, B, G and M are banded matrices (see Tassoulas 1981, Guddati 

1998, Park 2000). In applications to date, layer (material) properties have been assumed 

independent of horizontal location (range independence). The matrices A, B, G and M are 

then constant. Clearly, the system (Eq. 1) involves one spatial (horizontal) variable (two in 

three dimensions) and, thus, recognizes explicitly the intrinsic contrast between horizontal 

and vertical directions in the medium. 

 

Figure 2. Vertical discretization of a layered medium. 

CONSISTENT TRANSMITTING BOUNDARY 

One of the most efficient uses of the approach outlined above has been in the 

development of a “consistent transmitting boundary” for the representation of the exterior in 

dynamic soil-structure interaction computations (Waas 1972, Kausel 1974). It is based on a 

frequency-domain solution of the governing equations (Eq. 1). One looks for harmonic 

modes of the form: 

 tiikxee ω−= VU  (2) 
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For any given frequency ω, the wave-number-wave-mode pairs (k, V) satisfy the quadratic 

eigenvalue problem: 

 0VMGBA =−++ )( 22 ωikk  (3) 

The consistent transmitting boundary is obtained by expressing the wave motion in the 

exterior as a combination of admissible modes and calculating the so-called dynamic stiffness 

matrix relating boundary forces and displacements. It is worth mentioning that this boundary 

constitutes a perfect (global) absorber (as long as the underlying assumptions of linearity and 

range-independence prevail). As such, it has been used extensively in calculations of 

dynamic stiffness of foundations and soil-structure system response. Extensions and 

applications of the basic ideas have been pursued successfully in many other directions, 

including earthquake response of dam-water-sediment-rock systems (Lotfi et al. 1987, 

Bougacha and Tassoulas 1991a, b), dynamics of poroelastic media (Bougacha et al. 1993a, 

b), and interpretation of nondestructive tests of pavements (Foinquinos et al. 1995), to 

mention a few. 

TIME-DOMAIN COMPUTATIONS 

As alluded to above, the consistent transmitting boundary is a frequency-domain-based 

development and, therefore, not convenient or practical in problems involving nonlinearities. 

An equivalent boundary for direct use in the time domain has been elusive. This is the focus 

of recent research by the authors and their co-workers. Several time-domain alternatives have 

been explored successfully while maintaining the ideas underlying the general approach 

outlined for layered media, i.e., semidiscretization combined with the Principle of Virtual 

Work with respect to the vertical direction. Time-domain tools for exterior modeling have 

been formulated by exploiting the hyperbolic character of the governing equations and 

proceeding toward direct solution in space (horizontal direction) and time. Alongside these 

procedures, arbitrarily-high-order approximations of the dispersion relation have been 

obtained, amenable to implementation within the existing computational framework, while 

adaptive time-domain schemes involving error estimation and enrichment of the exterior 

representation have been devised. These developments are summarized below. 
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CHARACTERISTICS METHOD 

Toward a more general global boundary condition for time-domain computations, a 

characteristics-based solution procedure (Guddati and Tassoulas 1998a, 1998b) has been 

developed, applicable to antiplane shear-wave propagation in homogeneous media (layer and 

half/full space). The procedure involves three steps: (a) utilizing semidiscretization as 

described above to reduce the governing partial differential equation (PDE), into a system of 

hyperbolic PDEs in a single spatial variable and time; (b) splitting the displacement vector 

into wave modes, each satisfying the scalar dispersive wave equation; (c) solving the 

resulting scalar equation on the characteristic grid shown in Fig. 3. The third step is the key 

to the efficiency of the characteristics method. The solution in the space-time domain 

facilitates an element-by-element solution; the elements are processed in the order specified 

in Fig. 3 using a cell-centered finite-difference scheme. Such an element-by-element 

treatment makes the computational cost comparable to that of explicit time-marching, yet the 

method is unconditionally stable, owing to the space-time orientation of the grid. 

 

Figure 3. Space-time discretization for the characteristics method: element-by-element computation 
is the key to efficiency. 

The characteristics-based computation for the exterior results in the following form of the 

absorbing boundary condition relating the vector of boundary nodal forces S (discrete 

equivalent of tractions) and the vector of boundary nodal displacements U: 

 ( )t
t

∂
= + +

∂
US KU C H  (4) 
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It is worth mentioning that K and C are symmetric positive definite matrices, and ( )tH  is a 

vector evaluated at every time step from the characteristic grid. The positive definite nature 

of K and C facilitates unconditionally stable coupling with interior time-stepping schemes 

such as the Newmark β  method. With respect to accuracy, the characteristics boundary 

condition is comparable to the convolution-based methods. The computational cost of 

characteristic boundary, on the other hand, is at least an order of magnitude less than that of 

the convolution-based methods. In addition, it has been shown that the characteristics 

boundary significantly outperforms local absorbers with respect to overall accuracy and 

stability (Guddati, Park and Tassoulas, 1999), especially for fluid-structure interaction 

problems. 

SPACE-TIME DISCONTINUOUS GALERKIN METHOD 

The space-time discontinuous Galerkin method (STDGM) (Park and Tassoulas 2002) 

provides global absorbing conditions for layered media, or, in general, for systems 

characterized by multiple wave speeds. An overall solution procedure involving the STDGM 

can be sketched as follows. After semidiscretization of a medium extending to infinity in the 

x–direction, the exterior domain becomes a region in the tx −  space bounded by the 

characteristic associated with the highest wave speed c of the system (Fig. 4). The domain 

can then be partitioned by horizontal lines (parallel to the x-axis) and inclined lines (parallel 

to the fastest characteristic) into parallelograms and triangles, which constitute the space-time 

elements to which the discontinuous Galerkin method (Johnson 1987) is applied in an 

element-by-element fashion. That is, in order to obtain the solution at time tn, parallelogram 

elements )1,(,),2,(),1,( −nnnn …  are processed first, and the absorbing condition for the 

interior is derived as the interaction force cF  acting on the interior while the influence of the 

interior on the exterior is evaluated as the force ∞F  acting on triangle ),( nn . As the 

evaluation of cF  relies on the field variables defined on triangle ),( nn  and ∞F  on the 

solutions from the interior at tn, the system equations for the interior and triangle ),( nn  are 

coupled and thus solved simultaneously. 
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Figure 4. Exterior representation by the space-time discontinuous Galerkin method 

When the excitation is prescribed as seismic ground motion, the problem on the exterior 

domain is formulated in terms of the relative motion (with respect to the free-field ground 

motion), and matching conditions are imposed on the boundary between the interior and 

exterior domains. This modification introduces effective seismic forces in defining cF  and 

∞F  allowing for the consideration of soil-structure systems subjected to seismic waves (Park 

and Antin 2004). 

With regard to computational effort, the STDGM is comparable to the characteristics 

method, more efficient by at least an order of magnitude than methods based on convolution. 

Furthermore, all computational experiments to date suggest that the current implementation 

(Park and Tassoulas 2002) is second-order accurate and unconditionally stable. These 

features make the STDGM a reliable choice for modeling unbounded layered media in soil-

structure interaction analysis in the time domain. 

APPROXIMATION OF DISPERSION RELATION: CONTINUED FRACTION 

ABSORBERS AND ARBITRARILY WIDE-ANGLE WAVE EQUATIONS 

In spite of the excellent savings presented by the space-time methods, some large-scale 

problems still cannot be solved efficiently using global methods.  Furthermore, in many 

large-scale problems, the motion is predominantly composed of propagating (traveling) 

waves. Local absorbing boundary conditions (ABCs) can be used to simulate such waves in 

unbounded domains.  Although hierarchies of increasingly accurate local ABCs have been 

available (e.g., Engquist and Majda 1979), they could not be implemented in conventional 
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computational settings due to the presence of high-order derivatives (see, e.g., Givoli 1992). 

Recently, arbitrarily accurate local ABCs that can be implemented in standard finite-element 

and finite-difference settings have been developed, first for layers with straight computational 

boundaries (Guddati 1998; Guddati and Tassoulas 2000), and later for general polygonal 

computational domains (Lim 2003; Guddati and Lim 2004).  Both the derivation and 

implementation of these ABCs are based on the continued-fraction approximation of the 

dispersion relation, and thus, they are named continued-fraction ABCs.  Discretization of the 

boundaries, combined with the interior problem, results in a system of integrodifferential 

equations in time: 

 
2

2 dt
t t

∂ ∂
+ + + =

∂ ∂ ∫
U UM C KU R U F , (5) 

The coefficient matrices C and R are contributed by the ABCs. All the coefficient matrices, 

M, C, K and R, in the above equation are sparse, symmetric and positive definite.  The 

Newmark β  time-integration schemes are generalized to solve the above integrodifferential 

system in an effective manner (Guddati and Lim 2004). 

 

Figure 5. Implementation of continued-fraction absorbers: for most practical problems, only 
three to four layers of absorbing elements are needed. 
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The striking feature of the continued-fraction boundary condition is the ease of its 

implementation, which involves just adding a few (three to four) layers of absorbing elements 

for each edge and a consistent parallelogram mesh for each corner (see Fig. 5). It follows that 

the added computational cost is negligible in comparison with that required for the interior. 

To illustrate the effectiveness of the proposed technique, representative results are shown 

in Fig. 6, where antiplane shear waves from an explosion in a layered half-space are 

analyzed. Three layers of edge absorbers are added at the bottom and on both sides, and 

consistent corner absorbers at the bottom two corners. Fig. 6-b clearly indicates that the 

boundary condition is effective in absorbing all body and head waves. 

                   

 (a) (b) 

Figure 6. Effectiveness of the continued-fraction absorbing boundary conditions. 

Extension of continued-fraction absorbers for plane-strain conditions is not 

straightforward as the dispersion relation for the elastic wave equation involves matrix 

operators. Guddati (2004) has recently developed an effective way of devising a matrix 

continued-fraction approximation, which has been successfully used in deriving absorbing 

boundary conditions for P, S and Rayleigh waves. The implementation is almost identical to 

that for antiplane shear waves. Extension of continued-fraction absorbers to layered elastic 

media and to dispersive waves is currently underway. 

The continued-fraction approximation of the dispersion relation has also led to new one-

way wave equations named Arbitrarily Wide Angle Wave Equations (AWWE) that have 
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applications in subsurface imaging. In the context of seismic imaging, for example, waves are 

sent from the surface and the reflected waves from oil reservoirs (referred to as reflectors) are 

measured. The resulting surface trace is processed (migrated) to estimate the location of the 

reflectors. AWWE have been utilized for such processes. A representative result is shown in 

Fig. 7, where a synthetic surface trace, obtained from exploding reflector computation 

(Claerbout 1985), is processed with AWWE migration to form the image of the interior. The 

results clearly indicate the effectiveness of AWWE imaging (for details, see Guddati and 

Heidari 2004). 

 

Figure 7. Subsurface imaging using AWWE: the white lines are the exact locations of the 
reflectors while the underlying grayscale images are the AWWE results. Note that the exact 
reflectors have been shifted upwards for the purpose of facilitating comparison with the 
computed ones. 

ADAPTIVE TIME-DOMAIN COMPUTATIONS 

Use of local absorbing conditions provides an attractive means of simulating wave 

motion in unbounded media by virtue of their superior computational efficiency compared 

with global conditions.  However, local conditions prescribed on the boundary of truncation 

∞Γ  are bound to introduce errors in the computed solution due to their inability to perfectly 

absorb outgoing waves, which cause spurious wave reflection from ∞Γ  (Fig. 8). Although 

highly accurate local conditions of arbitrarily high order are being developed (e.g., Givoli and 

Neta 2003, Guddati and Tassoulas 2000), the magnitude of the ensuing errors cannot easily 

be predicted and, normally, a number of numerical experiments as well as experience are 

called for to verify the adequacy of the solution. Consequently, the entire analysis procedure 

can be time-consuming and the results may still be unreliable. 
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The idea of adaptive computations (Park 2004) is based on the observation that, given the 

size of a computational domain, there is a local absorbing condition of lowest order within 

the hierarchy of conditions under consideration that can produce the solution of desired 

accuracy.  On the other hand, although higher-order conditions undoubtedly lead to greater 

accuracy, lower-order conditions can also produce equally accurate results in the region of 

interest at the expense of enlarging the computational domain (thus placing the absorbing 

boundary farther from the region of interest). Consequently, given the order of the absorbing 

condition, it should be possible to select the smallest size of the computational domain that 

can produce the solution of desired accuracy.  Use of such a condition or domain can result in 

optimal treatment of the problem in the sense that a desired result is obtained with the least 

amount of effort. 

 

 

Figure 8. Reflected waves caused by the use of local absorbing conditions 

The foregoing arguments allow one to design an adaptive analysis procedure, which 

would select the optimal order of the absorbing condition or optimal size of the domain based 

on some a posteriori error estimation techniques to control the magnitude of the spurious 

wave reflected from the boundary of truncation, thus, ultimately, controlling the accuracy of 

the solution in the region of interest.  Such a procedure would be significantly more efficient 

and reliable because, first, local boundaries are used and thus the computational cost is very 

low; and second, the optimal order of or the optimal size of the domain is automatically 

determined by the solution algorithm without manually driven numerical experiments. 

Adaptive computations in the time domain would require a hierarchy of absorbing 

conditions of arbitrarily high order, if the order of the condition is to be controlled, and a 

method to extract the reflected wave field from the computed solution. Extraction of the 
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reflected wave should be achieved by a solution procedure applied to a small domain LΩ  in 

the vicinity of the boundary ∞Γ  (Fig. 8). Based on this local solution procedure, an error 

estimator can be defined that has good correlation with the intensity of reflected waves. It is 

the responsibility of the overall adaptive scheme to use this estimator to control the order of 

the absorbing condition. An implementation of the procedure in the context of one-

dimensional wave propagation is presented by Park (2004). Certainly, the challenge is to 

extend the concept to multidimensional situations.  

CONCLUSIONS 

Recent progress in the direction of time-domain computations of wave motion in layered 

media has led to a suite of effective tools. Space-time methods, including the characteristics 

method and the space-time discontinuous Galerkin method, exploit the hyperbolic character 

of the governing equations and lead to efficient, accurate and stable schemes. Furthermore, 

continued-fraction absorbing boundary conditions and arbitrarily-wide-angle wave 

equations have been devised. These approximations of the dispersion relation are highly 

efficient and accurate, particularly attractive in large-scale problems, and can be implemented 

easily within the existing computational framework. Also, adaptive time-domain procedures 

involving error estimation and enrichment of the exterior representation are being devised. 

The numerical treatment of waves in layered media is indispensable to studies of dynamic 

soil-structure interaction and geotechnical site characterization, and the time-domain 

developments reviewed in this paper are promising and versatile alternatives to frequency-

domain-based procedures, especially in problems involving nonlinearities. 
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